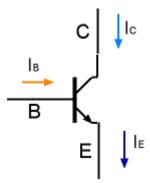
Transistor Bipolar

oleh aswan hamonangan

Pada tulisan tentang semikonduktor telah dijelaskan bagaimana sambungan NPN maupun PNP menjadi sebuah transistor. Telah disinggung juga sedikit tentang arus bias yang memungkinkan elektron dan hole berdifusi antara kolektor dan emitor menerjang lapisan base yang tipis itu. Sebagai rangkuman, prinsip kerja transistor adalah arus bias base-emiter yang kecil mengatur besar arus kolektor-emiter. Bagian penting berikutnya adalah bagaimana caranya memberi arus bias yang tepat sehingga transistor dapat bekerja optimal.


Arus bias

Ada tiga cara yang umum untuk memberi arus bias pada transistor, yaitu rangkaian CE (Common Emitter), CC (Common Collector) dan CB (Common Base). Namun saat ini akan lebih detail dijelaskan bias transistor rangkaian CE. Dengan menganalisa rangkaian CE akan dapat diketahui beberapa parameter penting dan berguna terutama untuk memilih transistor yang tepat untuk aplikasi tertentu. Tentu untuk aplikasi pengolahan sinyal frekuensi audio semestinya tidak menggunakan transistor power, misalnya.

Arus Emiter

Dari hukum Kirchhoff diketahui bahwa jumlah arus yang masuk kesatu titik akan sama jumlahnya dengan arus yang keluar. Jika teorema tersebut diaplikasikan pada transistor, maka hukum itu menjelaskan hubungan :

$$I_E = I_C + I_B \dots (1)$$

arus emitor

Persamanaan (1) tersebut mengatakan arus emiter I_E adalah jumlah dari arus kolektor I_C dengan arus base I_B . Karena arus I_B sangat kecil sekali atau disebutkan $I_B << I_C$, maka dapat di nyatakan :

$$I_E = I_C$$
(2)

Alpha (α)

Pada tabel data transistor (*databook*) sering dijumpai spesikikasiα_{dc} (alpha dc) yang tidak lain adalah :

$$\alpha_{dc} = I_C/I_E$$
(3)

Defenisinya adalah perbandingan arus kolektor terhadap arus emitor.

Karena besar arus kolektor umumnya hampir sama dengan besar arus emiter maka idealnya besar α_{dc} adalah = 1 (satu). Namun umumnya transistor yang ada memiliki α_{dc} kurang lebih antara 0.95 sampai 0.99.

Beta (β)

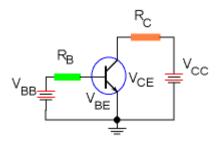
Beta didefenisikan sebagai besar perbandingan antara arus kolektor dengan arus base.

$$\beta = I_C/I_B$$
(4)

Dengan kata lain,β adalah parameter yang menunjukkan kemampuan penguatan arus (current gain) dari suatu transistor. Parameter ini ada tertera di *databook* transistor dan sangat membantu para perancang rangkaian elektronika dalam merencanakan rangkaiannya.

Misalnya jika suatu transistor diketahui besarβ=250 dan diinginkan arus kolektor sebesar 10 mA, maka berapakah arus bias base yang diperlukan. Tentu jawabannya sangat mudah yaitu :

$$I_B = I_C/\beta = 10 \text{mA}/250 = 40 \text{ uA}$$


Arus yang terjadi pada kolektor transistor yang memiliki $\beta = 200$ jika diberi arus bias base sebesar 0.1mA adalah :

$$I_C = \beta I_B = 200 \times 0.1 \text{mA} = 20 \text{ mA}$$

Dari rumusan ini lebih terlihat defenisi penguatan arus transistor, yaitu sekali lagi, arus base yang kecil menjadi arus kolektor yang lebih besar.

Common Emitter (CE)

Rangkaian CE adalah rangkain yang paling sering digunakan untuk berbagai aplikasi yang mengunakan transistor. Dinamakan rangkaian CE, sebab titik ground atau titik tegangan 0 volt dihubungkan pada titik emiter.

rangkaian CE

Sekilas Tentang Notasi

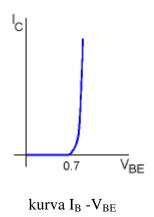
Ada beberapa notasi yang sering digunakan untuk mununjukkan besar tegangan pada suatu titik maupun antar titik. Notasi dengan 1 subscript adalah untuk menunjukkan besar tegangan pada satu titik, misalnya V_C = tegangan kolektor, V_B = tegangan base dan V_E = tegangan emiter.

Ada juga notasi dengan 2 subscript yang dipakai untuk menunjukkan besar tegangan antar 2 titik, yang disebut juga dengan tegangan jepit. Diantaranya adalah :

 V_{CE} = tegangan jepit kolektor- emitor

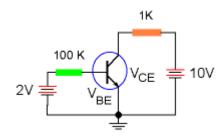
 V_{BE} = tegangan jepit base - emitor

 V_{CB} = tegangan jepit kolektor - base


Notasi seperti V_{BB} , V_{CC} , V_{EE} berturut-turut adalah besar sumber tegangan yang masuk ke titik base, kolektor dan emitor.

Kurva Base

Hubungan antara IB dan VBE tentu saja akan berupa kurva dioda. Karena memang telah diketahui bahwa junction base-emitor tidak lain adalah sebuah dioda. Jika hukum Ohm diterapkan pada loop base diketahui adalah :


$$I_B = (V_{BB} - V_{BE}) / R_B \dots (5)$$

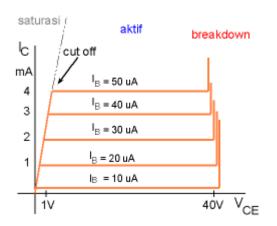
 V_{BE} adalah tegangan jepit dioda junction base-emitor. Arus hanya akan mengalir jika tegangan antara base-emitor lebih besar dari V_{BE} . Sehingga arus I_B mulai aktif mengalir pada saat nilai V_{BE} tertentu.

Besar V_{BE} umumnya tercantum di dalam *databook*. Tetapi untuk penyerdehanaan umumnya diketahui $V_{BE} = 0.7$ volt untuk transistor silikon dan $V_{BE} = 0.3$ volt untuk transistor germanium. Nilai ideal $V_{BE} = 0$ volt.

Sampai disini akan sangat mudah mengetahui arus I_B dan arus I_C dari rangkaian berikut ini, jika diketahui besar $\beta = 200$. Katakanlah yang digunakan adalah transistor yang dibuat dari bahan silikon.

rangkaian-01

&mnbsp;


$$I_B = (V_{BB} - V_{BE}) / R_B$$

= $(2V - 0.7V) / 100 \text{ K}$
= 13 uA

Dengan $\beta = 200$, maka arus kolektor adalah :

$$I_C = \beta I_B = 200 \ x \ 13 uA = 2.6 \ mA$$

Kurva Kolektor

Sekarang sudah diketahui konsep arus base dan arus kolektor. Satu hal lain yang menarik adalah bagaimana hubungan antara arus base I_B , arus kolektor I_C dan tegangan kolektor-emiter V_{CE} . Dengan mengunakan rangkaian-01, tegangan V_{BB} dan V_{CC} dapat diatur untuk memperoleh plot garis-garis kurva kolektor. Pada gambar berikut telah diplot beberapa kurva kolektor arus I_C terhadap V_{CE} dimana arus I_B dibuat konstan.

kurva kolektor

Dari kurva ini terlihat ada beberapa region yang menunjukkan daerah kerja transistor. Pertama adalah daerah *saturasi*, lalu daerah *cut-off*, kemudian daerah *aktif* dan seterusnya daerah *breakdown*.

Daerah Aktif

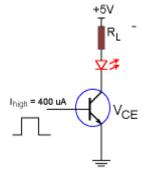
Daerah kerja transistor yang normal adalah pada daerah aktif, dimana arus I_C konstans terhadap berapapun nilai V_{CE} . Dari kurva ini diperlihatkan bahwa arus I_C hanya tergantung dari besar arus I_B . Daerah kerja ini biasa juga disebut daerah linear (*linear region*).

Jika hukum Kirchhoff mengenai tegangan dan arus diterapkan pada loop kolektor (rangkaian CE), maka dapat diperoleh hubungan :

$$V_{CE} = V_{CC} - I_C R_C \dots (6)$$

Dapat dihitung dissipasi daya transistor adalah :

$$P_D = V_{CE}.I_C$$
(7)


Rumus ini mengatakan jumlah dissipasi daya transistor adalah tegangan kolektor-emitor dikali jumlah arus yang melewatinya. Dissipasi daya ini berupa panas yang menyebabkan naiknya temperatur transistor. Umumnya untuk transistor power sangat perlu untuk mengetahui spesifikasi P_D max. Spesifikasi ini menunjukkan temperatur kerja maksimum yang diperbolehkan agar transistor masih bekerja normal. Sebab jika transistor bekerja melebihi kapasitas daya P_D max, maka transistor dapat rusak atau terbakar.

Daerah Saturasi

Daerah saturasi adalah mulai dari $V_{CE}=0$ volt sampai kira-kira 0.7 volt (transistor silikon), yaitu akibat dari efek dioda kolektor-base yang mana tegangan V_{CE} belum mencukupi untuk dapat menyebabkan aliran elektron.

Daerah Cut-Off

Jika kemudian tegangan V_{CC} dinaikkan perlahan-lahan, sampai tegangan VCE tertentu tiba-tiba arus IC mulai konstan. Pada saat perubahan ini, daerah kerja transistor berada pada daerah cut-off yaitu dari keadaan saturasi (OFF) lalu menjadi aktif (ON). Perubahan ini dipakai pada system digital yang hanya mengenal angka biner 1 dan 0 yang tidak lain dapat direpresentasikan oleh status transistor OFF dan ON.

Misalkan pada rangkaian driver LED di atas, transistor yang digunakan adalah transistor dengan $\beta = 50$. Penyalaan LED diatur oleh sebuah gerbang logika (*logic gate*) dengan arus *output high* = 400 uA dan diketahui tegangan forward LED, $V_{LED} = 2.4$ volt. Lalu pertanyaannya adalah, berapakah seharusnya resistansi R_L yang dipakai.

$$I_C = \beta I_B = 50 \text{ x } 400 \text{ uA} = 20 \text{ mA}$$

Arus sebesar ini cukup untuk menyalakan LED pada saat transistor *cut-off*. Tegangan VCE pada saat *cut-off* idealnya = 0, dan aproksimasi ini sudah cukup untuk rangkaian ini.

$$R_{L} = (V_{CC} - V_{LED} - V_{CE}) / I_{C}$$

$$= (5 - 2.4 - 0)V / 20 \text{ mA}$$

$$= 2.6V / 20 \text{ mA}$$

$$= 130 \text{ Ohm}$$

Daerah Breakdown

Dari kurva kolektor, terlihat jika tegangan V_{CE} lebih dari 40V, arus I_{C} menanjak naik dengan cepat. Transistor pada daerah ini disebut berada pada daerah breakdown. Seharusnya transistor tidak boleh bekerja pada daerah ini, karena akan dapat merusak transistor tersebut. Untuk berbagai jenis transistor nilai tegangan V_{CE} max yang diperbolehkan sebelum breakdown bervariasi. V_{CE} max pada databook transistor selalu dicantumkan juga.

Datasheet transistor

Sebelumnya telah disinggung beberapa spesifikasi transistor, seperti tegangan V_{CE} max dan P_D max. Sering juga dicantumkan di datasheet keterangan lain tentang arus I_C max V_{CB} max dan V_{EB} max. Ada juga P_D max pada $T_A = 25^\circ$ dan P_D max pada $T_C = 25^\circ$. Misalnya pada transistor 2N3904 dicantumkan data-data seperti :

$$\begin{split} V_{CB}max &= 60V \\ V_{CEO}max &= 40V \\ V_{EB}max &= 6 \ V \\ I_{C}max &= 200 \ mAdc \\ P_{D}max &= 625 \ mW \ T_A = 25^o \\ P_{D}max &= 1.5W \ T_C = 25^o \end{split}$$

 T_A adalah temperature ambient yaitu suhu kamar. Sedangkan T_C adalah temperature cashing transistor. Dengan demikian jika transistor dilengkapi dengan *heatshink*, maka transistor tersebut dapat bekerja dengan kemampuan dissipasi daya yang lebih besar.

β atau h_{FE}

Pada system analisa rangkaian dikenal juga parameter h, dengan meyebutkan h_{FE} sebagai β_{dc} untuk mengatakan penguatan arus.

$$\beta_{dc} = h_{FE} \dots (8)$$

Sama seperti pencantuman nilai β_{dc} , di datasheet umumnya dicantumkan nilai h_{FE} minimum (h_{FE} min) dan nilai maksimunya (h_{FE} max).

Penutup

Perhitungan-perhitungan di atas banyak menggunakan aproksimasi dan penyederhanaan. Tergantung dari keperluannya, untuk perhitungan lebih rinci dapat juga dilakukan dengan tidak mengabaikan efek-efek bahan seperti resistansi, tegangan jepit antar junction dan sebagainya.